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Stick-slip dynamics of a granular layer under shear
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Stick-slip regime of shear granular flows is studied theoretically and numerically. Numerical experiments are
carried out for a thin Couette cell using soft-particle molecular dynamics code in two dimensions. We apply
order parameter theory of partially fluidized granular flows and find a good agreement with simulations and
experiments by Nasunoet al.
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Densely packed granular assemblies under shear und
a first-order phase transition: from static they become flu
ized and the flow ensues. At smaller values of the sh
stress, the granular ‘‘fluid’’ freezes, and the flow terminat
These melting-freezing transitions play a key role in granu
friction. Nasunoet al. @1# studied the motion of a heavy plat
pushed above a thin granular layer via a soft spring wit
constant velocity of the pulling point. At large pulling spee
the plate moves with a constant velocity, whereas at sma
speeds, the motion of the plate is intermittent: long perio
of sticksare followed by shortslip events. Similar stick-slip
oscillations have been observed in other instances of gr
lar friction, for example when an object is moving throug
granular medium@2#. The mechanism of the stick-slip beha
ior of the granular layer was first addressed by Hayakawa@3#
who introduced a global order parameter~OP! which char-
acterized the phase state of the layer. In this model~as in the
earlier model of friction@4#! the hysteretic OP dynamics i
controlled by the plate speed@5#. The model yielded a stick
slip behavior qualitatively similar to Ref.@1#, however it
failed to describe the transition to the stationary sliding m
tion at larger pulling speeds. In Ref.@6# we applied our phe-
nomenological theory to the same problem. Unlike Ref.@3#,
our OP is local, and it is controlled by the Ginzburg-Land
~GL! free energy depending on the local ratio of shear
normal stress in the spirit of the Mohr-Coulomb yield crit
rion. Our model described fluidization transition in a th
near-surface layer leading to stick-slip oscillations at sm
pulling speeds, and stationary flow at larger speeds. H
ever, in Ref.@6# we used phenomenological equation for t
OP introducedad hoc, so the agreement with the experime
@1# was only qualitative.

In this paper we apply our recent continuum theory
partially fluidized flows@7# to the quantitative description o
granular friction. We also take into account the plate iner
In agreement with experiment@1#, we find a discontinuous
transition from the stick slip to the stationary motion a
reproduce the friction force-plate velocity phase loop ch
acterizing slip events. Furthermore, we describe the struc
of the granular flow underneath the plate during slip. O
theory is compared with two-dimensional~2D! soft-particle
molecular dynamics simulations.

We consider a granular layer in a planar Couette geom
driven by a moving upper plate of massM and lengthLx .
We use a fixed coordinate frame with horizontal axisx, ver-
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tical axisy, and the origin at the top of the layer. We assum
no slip between the plate and the granular layer, so the p
velocity V coincides with the granular velocityV(0) at y
50. The plate is pulled with a constant speedV0 via a soft
linear spring with elasticity constantK, so the force acting on
the plate from the spring isF5K(x2V0t2x0), wherex is
the position of the plate front andx0 is its initial position~at
t50 the spring is unloaded!. All variables and parameter
are scaled by the gravity accelerationg, particle sizedp , and
massmp . The equations of motion for the plate read

ẋ5V, mV̇5s2k~x2V0t2x0!, ~1!

where m5M /Lx , k5K/Lx , and s is the ~negative! yx
shear stress component~we assume that it does not depe
on y, which is a reasonable approximation based on our
merical simulations!. For a givens, the OPr is found from
the GL equation@7#

e] tr5D]y
2r2~r21!~r222r* r1r

*
2 e2A(d22d

*
2 )! ~2!

with r* 50.6, d* 50.25, A525, D52, e50.02. The con-
trol parameterd is the ratio of shear to normal stress,d(y)
52s/p(y)52s/(m2y). We assume no-flux boundar
conditionsr8(0)5r8(2Ly)50. The characteristic featur
of this equation is the bistability in the certain range ofd,
0.25,d,0.3, where the last term has three rootsr1,r2
,r351 among whichr1 corresponding to the fluid phas
andr351 corresponding to a solid phase are stable, andr2
is unstable. Atd,0.25 the only stationary uniform solutio
corresponds to a solid phaser5r351, and atd.0.3 it only
exists in a fluidized phaser5r2, however within 0.25,d
,0.3 both phases may coexist. This feature in fact gives
to the stick-slip oscillations of the plate. To close the syste
we integrate the constitutive relation@7#

~12r!qs52m fV8~y! ~3!

with no-slip boundary conditionV(2Ly)50, so

s52m fVF E
2Ly

0

~12r!qdyG21

. ~4!

Herem f'12 is the constant viscosity coefficient of the flu
subsystem andq'2.5 is the scaling constant found from 2
©2004 The American Physical Society02-1
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VOLFSON, TSIMRING, AND ARANSON PHYSICAL REVIEW E69, 031302 ~2004!
simulations of the thin Couette flow@7#. Equation~4! can be
used only within the slip event, because during the st
phase the OPr→1, and velocityV(0)→0, so Eq.~4! be-
comes indeterminate. In this case, the inertia of the plate
be ignored, the shear stress coincides with the spring fo

s52k~x2V0t2x0!, ~5!

andV can be found from the constitutive relation~3!,

V5V~0!52m f
21sE

2Ly

0

~12r!qdy. ~6!

Equations~1!–~6! were integrated numerically using th
finite difference method. We switch from Eqs.~2!, ~5!, and
~6! to Eqs.~1!, ~2!, and~4! when the plate velocity reaches
small threshold valueVtr51023 ~the dynamics of the system
is not sensitive to the specific value ofVtr). In a long stick
phase the plate velocity turns into machine zero and the
der parameter ‘‘freezes’’ in the unstable fixed pointr5r3
51 from which it cannot escape without perturbations.
avoid this spurious behavior, we subtracted a small rand
value @uniformly distributed between 0 andj5O(1026)]
from the order parameter at every time step. This correc
accounts for small rearrangements occurring in the gran
system under a nonstationary load. It remedies the prob
however the magnitude of the perturbation affects~albeit
only logarithmically! the period between the slips and, co
respondingly, the magnitude of the spring deflection. Inseb
in Fig. 1 shows the dependence of the oscillations period
the noise term magnitudej @8#.

FIG. 1. Vertical profiles of the order parameterr and horizontal
velocity v normalized by the plate velocityV for m520, k
52.7, V050.2. Inset a: stick-slip oscillations period as a functio
of the noise magnitudej subtracted from the order parameter
every time step form520, V050.2 and three values ofk. Inset b:
maximum plate velocity during slipVm vs V0 for three values of
spring constant. Solid line corresponds to the continuous slid
(Vm5v0).
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We chose the parameters of our model~mass per unit
length,m, and the spring constant per unit lengthk) based
on experimental values@1#. A direct comparison between ou
2D system and the 3D experiment is difficult, however w
can assume that our 2D system represents a one-particl
ameter ‘‘slice’’ of the full 3D system. In this case, the ma
and the spring constant in the experimental system shoul
scaled by the area of the top plate. Using nondimensio
units based on the gravity acceleration, particle mass
diameter, we find that mass of the plate 10 g correspond
m'20, and the spring constantk5135 N/m corresponds to
k'2.7. These values ofm andk have been used in most o
our calculations. We also ran simulations for stiffer sprin
with k510 and 20. The velocities are scaled by (gdp)1/2.
Thus for smooth particles explored in Ref.@1# the velocity
scale is'30 mm/s.

The main control parameter of this model is the pulli
velocity V0. At largeV0 we obtain a stationary near-surfac
shear flow. The vertical profiles of velocity and order para
eter forV050.2 are shown in Fig. 1~corresponding dimen-
sional velocity is 6.2 mm/s!. The velocity profile is almost
linear near the surface, and below the shear layer there i
exponentially decaying tail of the creep flow. The order p
rameter is small within the shear layer and approaches
large depth.

At small velocitiesV0→0 the model exhibits relaxation
oscillations reminiscent of the dry friction between two so
ids. The spring deflectionD5s/k grows almost linearly
with no flow until it reaches a certain threshold value af
which the near-surface layer fluidizes, and the ensuing sh
flow relieves the accumulated stress. After that the la
freezes again, and the process repeats@Fig. 2~a!#. In agree-
ment with experiments, in the inertia dominated regime
larger pulling speeds, the deflection of the spring becom
almost sinusoidal@see Fig. 2~b!#. Insetb in Fig. 1 indicates
that the transition from sliding to stick slips is discontinuou
and there is a range of velocitiesV0 in which sliding and
stick slips coexist.

g

FIG. 2. Relaxation oscillations of the deflectionD in GL theory
~a!, reduced equation~9! ~b!, and MD simulations~c! for m
520, k52.7, j51026: relaxation oscillations forV050.01, qua-
sisinusoidal oscillations atV050.1.
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STICK-SLIP DYNAMICS OF A GRANULAR LAYER . . . PHYSICAL REVIEW E 69, 031302 ~2004!
Figure 3 depicts the structure of an individual slip. As t
normalized shear stress below the plate reaches the cr
valued(0)'0.32, the order parameter starts to deviate fr
1, and the plate begins to move. The most interesting fea
of the slip event is a nonmonotone decay of the shear st
s. During the initial ‘‘melting’’ the order parameter de
creases, therefore the integral in Eq.~4! starts to grow. Mean-
while, the plate velocity still remains small due to inert
Therefore, at this stage the shear stress first quickly dr
Later the stress fall stops because the order parameter
rates at a certain low level, and the plate velocity reache
maximum. At the final phase of the slip, the velocity deca
while the order parameter is still below 1 so the shear st
drops rapidly again, until it reaches the lower critical valu
Thereafter, the order parameter quickly returns to 1 and
velocity to zero, the granular layer freezes and the new s
phase ensues. Inset in Fig. 3 shows the phase trajectorys vs
V which is remarkably similar to the experimental loop r
ported by Nasunoet al. @1#. The main quantitative differenc
is that the critical value of the normalized shear stress in
experiment was 0.65, whereas our theory calibrated by t
dimensional molecular dynamics~MD! simulations gives
0.32. This difference can possibly be explained by the f
that experiments were done in 3D geometry. It is interest
to see that the continuum theory describes the ‘‘precursor
a slip: small deviation of the order parameter from 1 beg
long before the actual slip occurs~see Fig. 4!. The detailed
structure of the slip event depends rather sensitively on
parametere which characterizes the relaxation time of t
order parameter. Inset in Fig. 3 shows the friction stres
plate velocity diagram for two different values ofe.

Equations~1!–~6! can be reduced to the set of equatio
for the velocity and position of the plateV,x and the thick-
ness of fluidized layerj. Equation~2! can be written as

FIG. 3. Structure of an individual slip eventm520, K
52.7, V050.001: plate velocityV, near-surface order parameterr,
shear stressusu, and the spring forceF. Inset: normalized shea
stressusu/M vs plate velocityV for two values ofe: e50.02~solid
line!, e50.1 ~dotted line!.
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e] tr5D]y
2r2~r21!~r2r1!~r2r2!

2~r21!~r
*
2 e2A(d22d

*
2 )2r1r2!, ~7!

wherer11r252r* . If the rootsr1,2 obey the condition 1
2r25r22r1 yielding r25(2r* 11)/3,r15(4r* 21)/3,
Eq. ~7! without the last term~that will be treated as a pertur
bation! possesses a stationary front solution

r5
12r1

2 S 12tanhF ~y1j!~12r1!

A8D
G D 1r1 . ~8!

Herej(t).0 is the position of the fluidization front or thick
ness of the fluidized layer. Due to the dependence ofd on y
the variablej becomes a function of time. The evolution ofj
can be obtained from standard orthogonality conditionsm
@1 is assumed!

j̇5C0s2S 12
2j

m D2C1 , ~9!

where

C05
3r

*
2 AA2D

em2~12r1!
, C15

@~12r* !219r
*
2 Ad

*
2 #A2D

3e~12r1!
.

For the parameters of Eq.~2! one hasC0512.65, C1
5326.4. From Eq.~4! we finds'2m fV@(12r1)j#2q. For
j5O(1) the front solution loses its validity and correspon
ingly, Eq. ~9! needs to be corrected. Formally, forj,jc!1
Eq. ~9! can be replaced by the equation for most unsta
linear perturbationsj̇5lj, where l'@r

*
2 A(s2/m22d

*
2 )

2(12r* )2#/e is the growth rate of small perturbations fo
lowing from Eq.~2!. Then the corresponding solution can b
matched with the front solution valid for largej. The struc-
ture of the resulting solution does not depend on the cu
value forjc→0. Numerically solved Eqs.~9! and ~1! are in
good quantitative agreement with continuum theory, E
~1!–~6!, see Fig. 2, however they are significantly simp

FIG. 4. Space-time plots ofr for m520, k52.7, V050.01:
continuum model~a!, numerical simulations~b!.
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and allow for analytical treatment. For instance, they can
used to find the duration of slip event. During the slip eve
one can neglectj̇ in Eq. ~9!, and the shear stress is almo
constant,s'sslip'AC1 /C0. Then the slip durationTslip
can be found from two equations~1! assumings5sslip ,
with initial condition V(0)50 and x(0)5xstick , where
xstick is defined by the end of the stick phase,xstick
5smax/k, smax is the value of stress at the end of stic
Solving linear Eqs.~1! one finds after simple algebra (v
5Ak/m is the oscillation frequency!

Tslip5
2

v
arctanFv~smax2sslip!

V0k G . ~10!

For V050.01 one obtainsTslip'8, which is in a good agree
ment with numerical solution. ForV0→0 the slip time ap-
proachesTslip→p/v and is determined by the response
the mass-spring system.

Our continuum theory, Eqs.~1!–~6!, has been calibrated
in Ref. @7# using 2D soft-particle molecular dynamics sim
lations of a stationary thin Couette flow between two pla
without gravity. We compared it with simulations of a st
tionary near-surface boundary layer in a thick Couette
under gravity. It is interesting to compare thenon stationary
stick-slip dynamics as described by this theory with M
simulations. We performed 2D simulations of a granu
layer driven by a heavy upper plate through a soft spr
analogous to the experiment@1#. Similar calculations have
been done in Refs.@9,10# using soft-particle MD with only
sliding friction taken into consideration. We believe for th
adequate description of the stick-slip dynamics it is imp
tant to take into account dry friction between the grains.
this end, we used the well-established approach@11,12#
based on the Cundall-Strack model@13#. The details of our
numerical algorithm and parameters are given in Ref.@7#.

We simulated up to 3000 polydisperse grains in a rect
gular box of lengthLx5100 with periodic boundary condi
tions in x direction and horizontal boundaries made of p
ticles with the same material properties but twice larger th
an average grain. Figure 2~c! shows the time series of th
tt

-
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spring deflection for two pulling speeds. They are quite sim
lar to experimental results in that they have a form of w
separated slip events at small pulling speeds and quasis
soidal oscillations near the onset of sliding motion at lar
speeds. The main difference with the theory and the exp
ment is that the slip events are rather irregular. This can
explained by the fact that in our small system the plate w
held by only a few~30–40! grains in a stuck position. Be
sides, there is a quantitative difference in the characteri
time between slips which is caused by the fact that in
merical simulations the deflection during the slip falls to
lower value than theoretically expected valuemgd* /k. We
believe that this effect is caused by the dilation of the th
near-surface layer of grains which permits the plate to s
farther than according to our incompressible theory. Nev
theless, individual slip events bear strong qualitative a
quantitative similarity to the slip events found in continuu
model as well as in experiments@1#. Precursor to the slip
which was found in Ref.@1# can be clearly seen in the evo
lution of the OP averaged over horizontal coordinate dur
the slip event~Fig. 4!.

In summary, we applied the continuum theory of partia
fluidized granular flows developed earlier on the basis of
molecular dynamics simulations of stationary granular sh
flows to an essentially nonstationary problem of granu
friction in the regime of stick-slip oscillations. Our theory t
date is only calibrated using the 2D molecular dynam
simulations, and that precludes a more rigorous compar
of the theory with experiments. However, on a qualitati
level, the theory exhibits a remarkable agreement with
periment @1# both in the bifurcation structure~it shows a
subcritical transition from stick-slip behavior to consta
sliding motion with increase of the pulling speed!, and in the
detailed structure of the slip event as indicated by Fig. 3
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