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Stick-slip dynamics of a granular layer under shear
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Stick-slip regime of shear granular flows is studied theoretically and numerically. Numerical experiments are
carried out for a thin Couette cell using soft-particle molecular dynamics code in two dimensions. We apply
order parameter theory of partially fluidized granular flows and find a good agreement with simulations and
experiments by Nasunet al.
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Densely packed granular assemblies under shear undergjoal axisy, and the origin at the top of the layer. We assume
a first-order phase transition: from static they become fluidho slip between the plate and the granular layer, so the plate
ized and the flow ensues. At smaller values of the sheavelocity V coincides with the granular velocity(0) aty
stress, the granular “fluid” freezes, and the flow terminates.=0. The plate is pulled with a constant speéglvia a soft
These melting-freezing transitions play a key role in granulatinear spring with elasticity constatt, so the force acting on
friction. Nasunoet al.[1] studied the motion of a heavy plate the plate from the spring iE =K(x—Vst—Xo), wherex is
pushed above a thin granular layer via a soft spring with dhe position of the plate front andg, is its initial position(at
constant velocity of the pulling point. At large pulling speed, t=0 the spring is unloadedAll variables and parameters
the plate moves with a constant velocity, whereas at smallere scaled by the gravity acceleratigparticle sized,,, and
speeds, the motion of the plate is intermittent: long periodgnassm,. The equations of motion for the plate read
of sticksare followed by shorslip events. Similar stick-slip ) )
oscillations have been observed in other instances of granu- x=V, mV=o0—k(X—Vot—Xop), (1)
lar friction, for example when an object is moving through
granular mediuni2]. The mechanism of the stick-slip behav- where m=M/L,, x=K/Ly, and o is the (negativg yx
ior of the granular layer was first addressed by Hayaki@a Sshear stress componefwe assume that it does not depend
who introduced a global order paramet@P) which char- ony, which is a reasonable approximation based on our nu-
acterized the phase state of the layer. In this meaein the ~ merical simulations For a giveno, the OPp is found from
earlier model of friction[4]) the hysteretic OP dynamics is the GL equatiori7]
controlled by the plate spe¢8]. The model yielded a stick- 2 2
slip behavior qualitatively similar to Ref1], however it €dp=Ddsp—(p—1)(p*—2p,p+pie AT %)) (2)
failed to describe the transition to the stationary sliding mo-
tion at larger pulling speeds. In R¢6] we applied our phe- Wwith p, =0.6, 6, =0.25, A=25, D=2, €=0.02. The con-
nomenological theory to the same problem. Unlike R8f,  trol parameters is the ratio of shear to normal stres¥y)
our OP is local, and it is controlled by the Ginzburg-Landau= —o/p(y)=—o/(m—y). We assume no-flux boundary
(GL) free energy depending on the local ratio of shear toconditionsp’(0)=p’(—L,)=0. The characteristic feature
normal stress in the spirit of the Mohr-Coulomb vyield crite- of this equation is the bistability in the certain range &f
rion. Our model described fluidization transition in a thin 0.25< §<0.3, where the last term has three ropts<p,
near-surface layer leading to stick-slip oscillations at smalkpz=1 among whichp; corresponding to the fluid phase
pulling speeds, and stationary flow at larger speeds. Howandp;=1 corresponding to a solid phase are stable, @nd
ever, in Ref[6] we used phenomenological equation for theis unstable. At§<<0.25 the only stationary uniform solution
OP introducedad hog so the agreement with the experiment corresponds to a solid phages p;=1, and at5>0.3 it only
[1] was only qualitative. exists in a fluidized phasp=p,, however within 0.25 6

In this paper we apply our recent continuum theory of<0.3 both phases may coexist. This feature in fact gives rise
partially fluidized flows 7] to the quantitative description of to the stick-slip oscillations of the plate. To close the system,
granular friction. We also take into account the plate inertiawe integrate the constitutive relati¢]
In agreement with experimeit], we find a discontinuous
transition from the stick slip to the stationary motion and (1—p)%=—pusV'(y) (3)
reproduce the friction force-plate velocity phase loop char-
acterizing slip events. Furthermore, we describe the structur@ith no-slip boundary conditioV(—L,)=0, so
of the granular flow underneath the plate during slip. Our
theory is compared with two-dimension@D) soft-particle
molecular dynamics simulations.

We consider a granular layer in a planar Couette geometry
driven by a moving upper plate of mast and lengthL, . Here u;~12 is the constant viscosity coefficient of the fluid
We use a fixed coordinate frame with horizontal axiser-  subsystem and~2.5 is the scaling constant found from 2D

-1

o=—uiV (4)

0
f (1-p)9dy
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FIG. 1. Vertical profiles of the order parameeand horizontal =20, k=2.7, £=10 ©: relaxation oscillations foW,=0.01, qua-

velocity v normalized by the plate velocityw for m=20, « sisinusoidal oscillations af,=0.1.

=2.7, Vy=0.2. Inset a stick-slip oscillations period as a function )

of the noise magnitudé subtracted from the order parameter at ~ We chose the parameters of our modelass per unit
every time step fom=20, V,=0.2 and three values of. Inseth  length,m, and the spring constant per unit length based
maximum plate velocity during sliy/,, vs V, for three values of ~ON experimental valugd]. A direct comparison between our
spring constant. Solid line corresponds to the continuous sliding?D system and the 3D experiment is difficult, however we
(Vim=00). can assume that our 2D system represents a one-particle di-

ameter “slice” of the full 3D system. In this case, the mass
simulations of the thin Couette flofi7]. Equation(4) can be ~ @nd the spring constant in the experimental system should be
used only within the slip event, because during the stickcaled by the area of the top plate. Using nondimensional
phase the OR— 1, and velocityV(0)—0, so Eq.(4) be- U!’lltS based on the gravity acceleration, particle mass and
comes indeterminate. In this case, the inertia of the plate Cag]lameter, we find that mass of the plate 10 g corresponds to

. e ; ; ~20, and the spring constakt=135 N/m corresponds to
be ignored, the shear stress coincides with the spring force",?%zjn These values oh and « have been used in most of

o= — k(x— Vot —Xo) (5) our calculations. We also ran simulations for stiffer springs
’ with x=10 and 20. The velocities are scaled tydg)*

Thus for smooth particles explored in Rét] the velocity
scale is=30 mm/s.

The main control parameter of this model is the pulling

(1-p)ady. (6)  Velocity Vo. At largeV, we obtain a stationary near-surface
Ly shear flow. The vertical profiles of velocity and order param-
eter forVy=0.2 are shown in Fig. 1corresponding dimen-

Equations(1)—(6) were integrated numerically using the sional velocity is 6.2 mmjs The velocity profile is almost
finite difference method. We switch from Eq®), (5), and linear near the surface, and below the shear layer there is an
(6) to Egs.(1), (2), and(4) when the plate velocity reaches a exponentially decaying tail of the creep flow. The order pa-
small threshold valu¥,, =102 (the dynamics of the system rameter is small within the shear layer and approaches 1 at
is not sensitive to the specific value &f;). In a long stick  large depth.
phase the plate velocity turns into machine zero and the or- At small velocitiesV,— 0 the model exhibits relaxation
der parameter “freezes” in the unstable fixed poi#p;  oscillations reminiscent of the dry friction between two sol-
=1 from which it cannot escape without perturbations. Toids. The spring deflectiol\ =o/x grows almost linearly
avoid this spurious behavior, we subtracted a small randorwith no flow until it reaches a certain threshold value after
value [uniformly distributed between 0 ang=0(10 ©)] which the near-surface layer fluidizes, and the ensuing shear
from the order parameter at every time step. This correctiofiow relieves the accumulated stress. After that the layer
accounts for small rearrangements occurring in the granuldreezes again, and the process repgaig. 2(a)]. In agree-
system under a nonstationary load. It remedies the problenment with experiments, in the inertia dominated regime at
however the magnitude of the perturbation affe@@tbeit larger pulling speeds, the deflection of the spring becomes
only logarithmically the period between the slips and, cor- almost sinusoida]see Fig. 2)]. Insetb in Fig. 1 indicates
respondingly, the magnitude of the spring deflection. Iiset that the transition from sliding to stick slips is discontinuous,
in Fig. 1 shows the dependence of the oscillations period oand there is a range of velocitid4 in which sliding and
the noise term magnitudg|8]. stick slips coexist.

andV can be found from the constitutive relati¢),

v=V(0)=—M;1afo
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FIG. 3. Structure of an individual slip evenin=20, K

=2.7, V,=0.001: plate velocity/, near-surface order parametgr edp=Dd2p—(p—1)(p—p1)(p—p2)
shear stres$o|, and the spring forcé. Inset: normalized shear Y
stresdo|/M vs plate velocityV for two values ofe: e=0.02(solid —(p— 1)(p,% e A%~ 82y _ p1p2), 7

line), e=0.1 (dotted ling.
wherep,+p,=2p, . If the rootsp, , obey the condition 1

Figure 3 depicts the structure of an individual slip. As the ~P2=p2—p1 Yielding p,=(2p, +1)/3p,=(4p,—1)/3,
normalized shear stress below the plate reaches the criticd- (7) Without the last ternithat will be treated as a pertur-
value 5(0)~0.32, the order parameter starts to deviate fromPalion possesses a stationary front solution

1, and the plate begins to move. The most interesting feature
of the slip event is a nonmonotone decay of the shear stress p= 1=p1 1—tan (y+8(1-p1) +py. ®)
o. During the initial “melting” the order parameter de- 2 V8D

creases, therefore the integral in E4). starts to grow. Mean- _ - S _

while, the plate velocity still remains small due to inertia. Here£(t)>0 is the position of the fluidization front or thick-

Therefore, at this stage the shear stress first quickly drop§ess of the fluidized layer. Due to the dependenceé ofy

Later the stress fall stops because the order parameter sa#f}e variable becomes a function of time. The evolutionff

rates at a certain low level, and the plate velocity reaches §n be obtained from standard orthogonality conditioms (

maximum. At the final phase of the slip, the velocity decays™ 1 IS assumexd

while the order parameter is still below 1 so the shear stress 2¢

drops rapidly again, until it reaches the lower critical value. '520002< 1— _) —-Cy, 9)

Thereatfter, the order parameter quickly returns to 1 and the m

velocity to zero, the granular layer freezes and the new stick
- . where

phase ensues. Inset in Fig. 3 shows the phase trajectosy

V which is remarkably similar to the experimental loop re- 20 A= 2 2 24 A
ported by Nasunet al.[1]. The main quantitative difference OZM, 12[(1 P+)" 9Py AS, ]V2D
is that the critical value of the normalized shear stress in the em?(1—py) 3e(1-py1)

experiment was 0.65, whereas our theory calibrated by two-
dimensional molecular dynamicMD) simulations gives For the parameters of Eq2) one hasC,=12.65, C,
0.32. This difference can possibly be explained by the fact 326.4. From Eq(4) we find o~ — u;V[ (1~ p;)£]™9. For
that experiments were done in 3D geometry. It is interesting = ©(1) the front solution loses its validity and correspond-
to see that the continuum theory describes the “precursor” ofdly. Eq. (9) needs to be corrected. Formally, < §.<1
a slip: small deviation of the order parameter from 1 begindEd- (9) can be replaced by the equation for most unstable
long before the actual slip occufsee Fig. 4 The detailed linear perturbationst=\¢, where A~[p2 A(c?/m?>— 52)
structure of the slip event depends rather sensitively on the-(1—p,)?]/€ is the growth rate of small perturbations fol-
parametere which characterizes the relaxation time of the lowing from Eq.(2). Then the corresponding solution can be
order parameter. Inset in Fig. 3 shows the friction stress—matched with the front solution valid for large The struc-
plate velocity diagram for two different values ef ture of the resulting solution does not depend on the cutoff
Equations(1)—(6) can be reduced to the set of equationsvalue for é,—0. Numerically solved Eq99) and (1) are in
for the velocity and position of the plad,x and the thick- good quantitative agreement with continuum theory, Egs.
ness of fluidized layeg. Equation(2) can be written as (1)—(6), see Fig. 2, however they are significantly simpler
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and allow for analytical treatment. For instance, they can bepring deflection for two pulling speeds. They are quite simi-
used to find the duration of slip event. During the slip eventlar to experimental results in that they have a form of well
one can neglect in Eq. (9), and the shear stress is almost separated slip events at small pulling speeds and quasisinu-
constant,o =~ ogji,~ JC,/C,. Then the slip duratior g, soidal oscillations near the onset of sliding motion at large
can be found from two equatiord) assumingo= oy, speeds. The main difference with the theory and the experi-
with initial condition V(0)=0 and x(0)=Xick,» Where ment is that the slip events are rather irregular. This can be
Xstick 1S defined by the end of the stick phase,  explained by the fact that in our small system the plate was
=0omax/ K, Tmax IS the value of stress at the end of stick. held by only a few(30—40 grains in a stuck position. Be-
Solving linear Egs.(1) one finds after simple algebrav( sides, there is a quantitative difference in the characteristic
=/ k/m is the oscillation frequengy time between slips which is caused by the fact that in nu-
merical simulations the deflection during the slip falls to a
T :3 arcta’{“’(‘Tmax_ Tslip) (10) lower value than theoretically expected valugs, /«. We
P Vox ' believe that this effect is caused by the dilation of the thin
) L near-surface layer of grains which permits the plate to slip
ForV,=0.01 one obtaing;,~8, which is in a good agree- ¢4 ther than according to our incompressible theory. Never-
ment with numerical solution. Fov,—0 the slip time ap-  heless, individual slip events bear strong qualitative and
proachesTi,— 7/w and is determined by the response of g aniitative similarity to the slip events found in continuum
the mass-spring system. _ model as well as in experimenf&]. Precursor to the slip
~ Our continuum theory, Eq$1)—(6), has been calibrated \hjch was found in Ref[1] can be clearly seen in the evo-
in Ref.[7] using 2D soft-particle molecular dynamics simu- | tion of the OP averaged over horizontal coordinate during
lations of a stationary thin Couette flow between two platespe slip eventFig. 4).
v_vithout gravity. We compared it with_simula_tions of asta- | summary, we applied the continuum theory of partially
tionary near-surface boundary layer in a thick Couette celfyigized granular flows developed earlier on the basis of 2D
under gravity. It is interesting to compare then stationary  molecular dynamics simulations of stationary granular shear
stick-slip dynamics as described by this theory with MDfiqys to an” essentially nonstationary problem of granular
simulations. We performed 2D simulations of a granulargiction in the regime of stick-slip oscillations. Our theory to
layer driven by a heavy upper plate through a soft springyate is only calibrated using the 2D molecular dynamics
analogous to the experimefit]. Similar calculations have  gjmylations, and that precludes a more rigorous comparison
bgen done_m Refs{g,;O] usmg'soft—partlcle MD _Wlth only  of the theory with experiments. However, on a qualitative
sliding friction taken into consideration. We believe for the joye| the theory exhibits a remarkable agreement with ex-
adequate description of the stick-slip dynamics it is impor-periment[1] both in the bifurcation structuréit shows a
tant to take into account dry friction between the grains. Togypcritical transition from stick-slip behavior to constant
this end, we used the well-established approgth12  gjiging motion with increase of the pulling spegend in the

based on the Cundall-Strack mod&B]. The details of our  getaijled structure of the slip event as indicated by Fig. 3.
numerical algorithm and parameters are given in [Réf.
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